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EVALUATION

1 . This report is the Fina l Report on the contract. It covers
research done on radia tion from thin slots in perfectly —conducting
p lana r and cylindrica l structures during the 11 month period 15 March
1976 to 6 January 1977. The work deals with a geometrica l theory of
diffraction analysis of hi gh frequency radiation From thin slots in
perfectly —conducting plana r and circul a r cylindrica l structures which
are partia lly covered with a reactive impedance surface to enhance
strong circularl y polarized radiation in the vicinity of the horizon.
Numerica l results and ana l ytical expression have been presented for
the radiation patterns of both the transverse electric (TE) and trans-
verse magnetic (TM) cases . Results of the geometric theory of diffraction
(GTD) calculat ions are compared against results obta i ned by a combination
of the method of moments (MM) and the (GTD), abbreviated as (MM-GTD).
Althoug h each is an approximate method the MM-GTD method is sli ghtly
more accurate in predicting the patterns of electromagnetic radiation
for these types of antennas.

2. The present study is applicable to the problem of controlling the
pattern shape of electromagnetic radi ation from flush mounted antennas
used, in hig h speed aircraft, missiles or satellites .
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I .  INTRODUCTION

This report deals with a geometrical theory of diffraction (GTD) [1]
analysis of the high frequency (h . f . )  radiation from slots in perfectly -
conducting, planar and circular cyl indrical structures which are partly
covered wi th an impedance surface patch. The present study is applicable
to the problem of controlling the pattern shape of the el ectromagnetic
radiation from a flush mounted , airborne antenna for satel l i te comuni-
cation purposes. In this appl icat ion , a slot antenna is flush mounted in
the aircraft fuselage , and the radiation pattern in the roll plane
containing the slot is of interest. Consequently, the problem is
essentially two-dimensional (2 -0) in nature , and the aircraft fuselage may
be modeled approximately by a circular cylinder in the roll plane . The
effects of the aircraft wings are ignored in this initial study ; however ,
their effects can be incorporated in the future work in a straightf orward
manner as wi l l  be indicated later on. In particular , it is of prime
interest in the satel l i te corrrnunic ation type application for the airborne
antenna to have a gain approximately that of the pattern maxim um near the
horizon or the shadow boundary associated with the antenna . Such a des ired
hi gh gain may be achieved by an impedance loading of the perfect ly -
conducting surface around the slot.

The antenna configurations of interest which are analyzed in this
report are illustrated in Figures 1 and 2. The slot is present in the
perfectly-conducting surface and the perfectly -conducting surface is
coated with a sufficiently long impedance surface patch which also covers
the slot as shown in Figures 1 and 2. With a proper choice of impedance ,
the slot may be allowed to rad iate as an end-fire antenna near the horizon ;
th is effect may then be employed to increase the gain near the hor i zon .
By a proper choice of the impedan ce , Zs, it is implied that Z~ is chosen
such that the slot can excite a bound surface wave mode on the planar
impedance surface of Figure 1; whereas , it can excite an Elliot type mode
[2J on the curved impedance surface of Figure 2. The Elliot mode propa-
gates along the curved impedance surface with negligible leakage , and i t
corresponds in the limiting case of the infinite radius of curvature to
the bound surface wave mode on the planar impedance surface. These modes
on the im pedance surface d i ffract  from the en ds of the impedance patch
(as a result of the discontinuity in surface impedance there), there by
produc ing an end-fi re effect. It is noted that the surface wave or
Ell iot type modes discussed above are excited by an axial (or z-directed)
slot i n the conf igurat ions of F i gures 1 and 2 , if the surface impedance
i s i nduct ive .  Whereas , a circumferential (or T-directed ) slot will excite
these modes only if the surface impedance is capac itive .

In the present analys is , the impedance surface patch is used to
approxima tely simulate the effects of a thin , un iform dielectric or
fer ri te cove r , or a properly designed corrugated surface of finite
extent on the perfectly-conduct ing planar or cylindrical antenna
structure . The slot in the perfectl y-conducting structure is covered
by the dielectric or ferrite material , and it is assumed tha t the
electric field in the blot aperture is known , so that one also knows
the equiv alent magnet ic current in the aperture . The radiation
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Figure 1. A thin , 2-U slot in an infinitely long, plana r ,
perfectly-co nducting structure with a surface
impedance patch of length L. The value of the
surface impedance is Z~ .

Q~~CYLINOE R RADIUS
A A A
Z~~~X X y
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X L*a(24,0)

Z, 0 IMPLIES A PERFECTLY
CONDUCTING SURFACE

(THIN 2—D SLOT )— ~~ z io

a

Fi~ ure 2. A th in  2- .;~~ iii a perfectly —cond ucting circular
cyli ni- .~~th an imp edance surf ace patch of arc
len gth L. The value of the surface i mpedance is Z5.
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from a slot of finite width may be obtained by quantizing the
source distribution in the aperture , and by superp osing the f ields
ra di ated by each of the qu a n t i ze d so urces . An equivalent quantized
source in this case is a z-directed magnetic line source for the axial
s lo t ;  whe reas , it is a -t-directed magnetic line di pole for the circum-
fe rent i al s lo t .  These equivalent quantized magnetic currents radiate in
the presence of the perfectly-conducting surface (which covers the
aperture as well), and the dielectric or ferrite material which covers
the perfectly—con ducting surface . The st reng th s of the eq u i v a l e n t
sources are weighted according to the source distribution in the aperture.
In the present report , only the radiation from a magnetic line source and
a magnetic lin e dipole will be anal yzed since the radiation from a slot
of finite width may be readily obtained from this analysis by super-
position. In the impedance surface approximation for the truncated
dielectric or ferrite cover on the perfectl y—conducting surface , the
equivalent problem to be analyzed consists of an equival ent magnetic line
or line dipole source on the impedance surface patch whi ch covers the
perfectly —conduct ing planar or cylindrical surface .

While the cylindrical antenna confi guration of Fi gure 2 is important
in thi s stud y because it models an aircraft fuselage in the roll plane ,
the planar configuration of Fi gure 1 is also analyzed in this report
because it is a more basic geometrical configuration involving a
perfectly -conducting structure with a surface impedance patch , an d because
a comparison of the patt erns for the configurations in Figures 1 and 2
a l l o w s  one to asce rt ain the eff ects of su r face  cur vatu re espec i a l l y  in
the region of space in which the slot is directly visible (i.e., the l i t
reg ion).

A GTD analysis has been performed previously with success to
anal yze the rad iat i on from slots i n t run cate d , p lana r di elec tr i c covere d
sur faces [3] , hence it was decided to extend the GTD analysis of [3] to
treat the p ro b lems in F igu res 1 and 2 . In particular , the GT D so lu t i ons
to the p ro b le ms in  F ig ures 1 and 2 are “built up ” from the asymptotic h.f .
solut ions to several , ap propriate canonical problems as in [3], however
th e type of ca non i cal p ro b le ms a na lyze d an d emp loye d in th i s report are
quite different from the ones employed in [3]. The si gnificant advantages
of the GTD me tho d , which is an asymptotic h . f .  me tho d , are tha t  once the
pertinent GTD launching, propagation and diffraction coefficients are
know n from the solutions to canonical problems (or by some other means),
the n the GTD may be used to ca lc u l a t e  the f i el ds ra di ate d , scattered , or
diffracted fro,i complex structures in a simple fashion by appropriatel y
expressing the fields in terms of the above mentioned coefficients
together with the spatial divergence factors for the rays associated with
these f i el ds. Such a ray description results from the local nature of
propagation , scattering, and diffraction which is exhibited by asymptotic
h . f .  f i eld a pp rox imat i ons .  The sp .:t cI divergence factors for the rays
indicate the presence and t~ c l ocat ion s of the ca us ti cs of the ray
system . General ly or~~ u~ the caustics of the diffracted ray occurs at
the point of diffraction on the surface . Awa y from the point of dif-
fraction , the diffracted ray tube spreads according to the l aws of
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ordinary geometrical optics. The launch i n g or dif f ract i on coeff i c i ents
prov id e the star t ing ampl i tu des of the rays d i r ectl y emanated from the
so u rce , or the rays dif f racte d from ce r t a in  po in ts of di f f r ac t i on on the
surfac e, res pect i vel y . The refore , in addition to the usual rays of
geometrical optics corresponding to the incident and reflected rays which
propagate from the source to the observation point along direc t and
ref lec ted ray p a ths , respectively, the diffracted rays propagate from the
source to the observa ti on po i nt v i a po i n ts of di ff ract i on on the su rface
in accordance with the generalized Fermat ’s principle proposed in Keller ’s
GTD [1]. The diffracted rays are produced by the presence of discontin-
ui t i es or var i at i ons i n the geometr i ca l a nd electr i cal proper t i es of the
su rface (e .g., a discontinuity in surface impedance). Fo r a compr ehens i ve
accou nt of GTD w hi ch a l so  in clud es some new an d usef u l res u l t s  for
eng i neer in g app l i ca t i ons , one is referred to Kouyoumjian [4]. The ray
descr iption for the fields not only provides a simple solution , but one
which is also hi gh ly  ef fi c i e n t for num er i cal computat i ons . F u r thermo re ,
the ray contributions provide a direct physical insi ght into the variou ~;scattering diffraction and radiation mechanisms which are present ,
thereby also providing useful design information for controlling thes e
effec ts advan tageo usl y .

One notes however that the ray optical field description breaks
down at and in the neig hborhood of caustics and shadow boundaries ,
hence the ray f i eld mu st ei ther  be mod if i ed or su pp lemente d by a
se parate so lu t i on so tha t  it rema i ns val id w it h in these regions of space
wh i ch are commonly referre d to as t ra n s i t i on regi ons . The field analys’s
in the tra ns i t i on reg i on i s com p l i cate d beca use the f i el ds mu st change
rapidly but smoothly across these regions . Modifications or the intro-
duction of supplemental solutions to the ray field within the transition
reg ions are referred to as un i f o rm rep rese n tat i ons i f they not on ly
remain valid within these transition regions , b ut i f they a l so  red uce to
the proper ray fields outside the transition regions. The re a re no ray
caust i cs in the far zone of the sources i n the a nten na conf i gura ti ons of
Fi gures 1 and 2 , respectively ; however, shadow boundar ies are present for
the circular cylinder antenna configuration of Fi gure 2 due to the
f in i te rad i us of cu rva t u re of the cyl in de r i n th i s case . Such shadow
boundar ies are absent in the planar configuration of Figure 1. Hence , a
uniform asymptotic approximation is developed in the present analysis
fo r the cyl ind r i cal an tenna  conf i guration of Fi gure 2 to provide field
express ions wh i ch ar e val id w i th in the trans i t i on regions , and wh i ch reduce
un i forml y to the ray f i el ds outs i de these regi ons .

The analytical details are presented in Section II. Some preliminary
nume ri cal resu l t s  fo r the radi at i on pat terns are i l l u s t rated i n Sect i on
111 for both , axial and circumferenti al slots in the geometrical configur-
ations ot Figures 1 and 2, respectivel y. The solu ti ons to the var i ous
canon i cal prob le ms f rom wh ic h the t i n o l  GTD sol u t i on i s constructed are
indicated in the Append ic ,~:. ~urne useful modifications , ref i nements ,
and general izat~on: of th is work which are worth pursuing are also
di scusse d i n Sect i on I I I .
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I I . ANALYTI CAL FORMULAT I O N

The ray optical analysis based on the GTD for the antenna confi gur-
ations of Figures 1 and 2 will be indicated in this section. Specifically,
the manner in which the analysis of the compos i te problems in Fi gures 1
and 2 will be buil t up or constructed from the asymptotic solutions to
somewhat simpler canonical p r etl em s wi ll be indicated . Bas ically, the
total radiated field is cot;iposed of the fields associated with rays which
propagate not only direct li from the source to the observation point , but
also with rays which propagate via points on the surface at which
variations or disconti nu it ies in the geometrical and electrical properties
can occur . Such points constitute points of diffraction on the surface .

The planar configuration of Fi gure 1 will be analyzed first in
Sectien A , and the analysis for the cylindrical configura tion of Fi gure
2 ~i 1l follow in Section B . Both , the axial and circumferential slot
cases w i l l  be considered in Sections A and B. It is noted that due to
the 2—0 nature of the problem , an axial  slot in the confi gurations of
Fi gures 1 and 2 radiates only a z component of the magne tic f ield which
w i l l  be denoted by Hz; whereas~ a circumferent ial slot in these confi gur-
ations radiates only a z component of the electric field which will be
denoted by Ez. The solution for the axial slot case may be referred to -

as the TE~ solution , and likewise the solution for the cirLumferential
slot case may be referred to as the TMz solution.

As mentioned previously in Section I , onl y the radiation from a
magnetic line source (for the TEz case) and the magnetic line dipole
source (for the TMz case) on an impedance surface patch which covers a
perfectl y-conducting planar or circular cylindrical surface will be
analyzed in this report; these magnetic line currents constitute the
quantized , equivalent sources in the axial and circumferential slot
apertures. The radiati on from a 2-LI axial or circumferential slot of
finite width may be readily obtained from this analysis via superposition .
In the impedance surface appr oximation for the truncated dielectric or
ferrite cover on the perfectly-conducting surface , the equivalent
problems to be analyzed therefore consist of an equivalent magnetic line
or line dipole source on an impedance surface patch which covers the
perfectly —conducting planar and cylindrical surfaces , respectivel y.

An eJWt time convention is assumed and suppressed in the following
analysis unless specified otherwise (as in Appendix I i ) .

A . A nalys i s of the Pla nar An te nna Co nf i guration

According to the GTD , one may simply describe the field radiated
by the planar antenna configuration of Fi gure 1 in terms of a super-
position of the fields associated w i t h  the rays which are directly
radiated by the source at 0, and the rays which are diffracted from the
ends of the surfare ir ~peJance patch at Ql and Q2~ respectively . The •

pertinent rays for this problem are i l lust rated in Fi gure 3 in which
~r represents the field of the ray direct l y radiated from a line sour ce

5
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OF THE IMPEDANCE PATCH
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L/2 k
Z~ zO Z~�O

LINE SOURCE
AT 0

Figure 3. Rays associated wi th the radiation from a line source
on an inf inite , planar perfectly—conducting surface
which is covered wi th an impedance surface patch.

at 0, whereas 4 an d 4 represent the fields diffracted from the ends
Qi an d Q2 of the surface impedance patch , respectively . The surface
i mpedance , Z5 is chosen to support a bound surface wave type mode which
is ~xcited by the line source at 0. Thus the surface impedance , Z~ is
inductive for the magnetic line source case (corresponding to the axial
slot , or TE z case) , whereas Z~ is capacitive for the magnetic line
dipole source (corresponding to the circumferential slot ,~or TMz case) .
The f i eld of this  boun d surface wave mode is deno ted by U’; th i s f ie ld
propagates from the source at 0 to the ends of the surface impedance
patch at Qi and Q2~ res pect i vely as shown in  Fi gure 3, S i nce there i s a
discontinuity in surface impedance at Ql and Q2~ 

the f i e l d  9 1 at Ql ,2 is
partly refl ected , and partly diffracted from Ql ,2 . Thus , u~’,2 is produced

via the diffraction of the surf ace wa ve f iel d u1( Q1 2) when it imp i nges
upon the surface impedance discontinuity at Ql ,2• Of course , multiple
reflections of the surface wave f ield can occur between the ends Qi and Q2’
and the inc lusion of these multiple reflection -diffraction effects is
discussed later in Section III. It is assumed in the present analysis
tha t the surface impe dance patch is s u f f i c i e n t l y  large in  extent so that
onl y the bound surface wave mode field u 1 (which is a non-radiatin g field)
constitutes the dominant contributor to the field on the impedance

6



I

surface far from the source , s i nce the f i eld ~r (i .e. , the ra d iate d or
space wave field) becomes vanishin gly small along the surface impedance
boundary when it is evaluated far from the source. Th is assumption may be
veri fied by solvin g the canonical problem of a line source on an infinite ,
planar impedance curface as shown in Fi gure 4. The canonical  p robl em
of Figure 4 is briefly analyzed in Appendix I , an d the so lu t ion  to .this
problem provides the necessary expressions for the fields u t an d u 1 of
Figure 3.

P
( p ,4~)

V

Px

_  
/~~~~~~~~~~~~~

~~~ 
,,, 

~“s~~~’’r#~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

L I N E  SOURCE AT 0 Z~:NON— ZERO
ON TH E IMPEDANCE SURFACE IMPEDANCE
SURFACE AT y ’O , jx J<~~

Fig ure 4. Geome try of the canon i cal prob lem of a l i ne sourc e on
an in f i n ite, p lanar  i mpedance sur fac~..

In the rad iation pattern analysis , the field point P is assumed
to be in the far zone of the surface impedance patch . The f i eld ur(P),
which is the field u” evaluate d a t P i s a cyl i ndr i cal wave type f i el d
which emanates from the l i ne source at 0 when P is suff i c i entl y far  from
0; this field may be represented according to geometrical optics as

Ur(P) ~ Ur(P1) ~ 
p r e i

~~~~
’
~ (1)

~ r~[~~l]

where P’ is some reference polnt* on the ray path from 0 to P , and k is
the free space wave number. The caustic distance 0r of th i s  ray is
simply the d istance UP’ . In order ‘ relate the field ur ( P ) to the
source , one must take the l i n it of the RHS of Equation (1) as p ”-’O (or
P ’ approaches the p oint U) .  In the ray approxima tion , u r (p1) is singular

~1’he quantity PP’ in Equation (1) denotes the distance from P’ to P.
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at the caustic , but the l i m i t  of ~~~~ u”(P ’ ) as ~r...0 exists , and it is
proportional to the strength of the magnetic line source or the magneti c
line dipole source at 0 and the radiation coefficient R which is defined
below. Let g = uM a(x)6(y) denote this magnetic line source , or the
magnetic line dipole source so that

•Iim ~J7u
r(p1) ~ M R  . (2)

One notes that u4 for the axial slot or the magnetic line source case,
whereas u=x for the circumferential slo t or the magnetic line dipole case.
The constant of proportionality in the above limi t is defined as C~, where
C0 is some complex constant. The radiation coefficient R indicates the
manner in which the source M at 0 distributes the radiation field in space ;
thus , R is ident ical to the pattern factor of the source . In general , R
is a function of the azimuthal ang le p . One notes tha t PP ’ -~p as p

r+0, so

—j kp
Ur(p) ~ C 0 M R(4 ’ ) e (3)

The constant C0 and the radiation coefficient R(q)  are dete ,nined from
the solut i on to the canonical  problem of F i gure 4, as given in
Appendix I.

— , for the magnetic line di pole , or TM
~ 

case

- Y~, ~~ for the ma gnetic l i n e  source , or TE
~ 

case. (4)

The V 0 4n Equation (4) -is the free space admittance. R(~ ) will be dif-
ferent or the magnetic line source , and the magnetic line dipole; the
e x p l i c i t  form of this coefficient will be indicated later.

Th’~ fiel ds 4(P) and 4(P) at P which  are d i f f r ac t ed  from the ends
of the ~.urface impedance patch at Ql and Q2, res pect i vely may be
assumed to be produced by localized equivalent magnetic line sources or
l in e dipoles at these ends . Thus , 4 2(P) may also be expressed in
term s of a cy l indr ical ray divergence ’~factor via ray optics as

• ~d -jkP’ Pd ,~~ d 1,2 1,2 5
‘ ‘

where P~ is some reference point between Ql and P; likewis~ P~ is some
reference poi n t between Q2 and P. The caus t ic  dis tances  ~~ 2 for these
d i f f rac ted ray f ie l ds are simpl y gi ven by 

4 2  
= Q 1 ,2 Pj ,2~ 

As before
,8
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~
p
~~2 42

(P’)

P 1

is f i ni te an d proportion al to the stren gth of the e qu iva l en t  l i n e  source
at Q1 ,2• The streng th of the equivalen t line source would of course be
proportional to the strength of the surface wave field u~ wh i ch str i kes
the ends Ql ,2 to produce the diffracted field 42(P). Hence

1~ m ~j 42 u~~2 (P ’ )  = u’ (Q 1,2 ) .

P 1

where D (t
~l ) is the diffraction coefficient at Q i 2 which indicates the

manner in ~~ich the diffracted field is distributei~ in space . The
funct ional  form of D is the same at Ql and Q2~ res pect ively , an d the
d i f f r ac t i on  coeffi c i ent at Ql de pen ds on the an g le qq ; whereas , the dif-
fraction coefficient at Q2 depen ds on the an gle 

~~ 
The an gles +1 and •2

are indicated in Fi gure 3. Thus , Equation (5) becomes

d 
—jks 1 2

u1 2 (P) u1 (Q 1 2~ 
D(~ 1 2 ) 

~~~ 2 
~ 

~~~~~~ 
(6)

• It is noted that P~P-’s1 as p~-~O , an d P~P-s 2 as p~-”O , in Equation (5). In

the far zone , one may app roximately  re p lace

e
3’

~~
1
~

2 
b e ”

~~ 
j k ~coS~ 1 2

____ 
y e

using the origin as the phase reference. Thus ,

- j~~~
(
~~ 

-jkp

42(P) u’(Q 1 2 ) °~
$1 2 ~ 

e -- 1 ,2 e (7)

The incident surface wave field 0
1 (0 1 ~) launched by the source M at 0

may be represented as

u 1 (Q 1 2 ) = C 0 M LSW e (8)

9 
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where LSW and ~ are the surface wave launching and propagation coef-
fi.ients , respectively; both of these quantities are found from the
s’Dlution to the canonical problem of Figure 4 as g iven in Appendix I.
The remaining quantity , D (Pl ,2) in Equation (7) must be found from the
soluti on to the canonical problem of Figure 5 as given in Appendix II.

~

z s �O z s =o

& = INCIDENT SURFACE WAV E MODE FIELD

~r R EFLECTED SURFACE WAV E MODE F I E L D
D I F F R A C T E D  FIELD

Figure 5. Geometry of the canonical problem of surface wave
diffract ion by a discontinuity i n surface imped-
ance associated wi th a two part , planar impedance
surface in which the surface impedance for x>O
and y=O is zero corresponding to a perfectly-
conducting boundary .

As pointed out by Keller and Karal (Journal of Appi . Phys., Vol. 31 ,
No. 6, June 1960, pp. 1039—1046), and more recently by Felsen and
Choudhary (IEEE Trans. Antennas and Propagation , Vol. AP-2l , November

• 1973, pp. 827-842), the geometrical representation of evanescent or
surface waves is by complex rays; however , since the source and field
points lie on the lossless impedance surface in the calculation of
u’(Q1 ,2) in this analysis , and since the field of the surface waves is
not included at P, the representation in Equation (8) is adequate .

On€ may now specialize the above set of results to the axial slot
(or TEE) and the circumferential slot (or T~z ’ cases , respective ly. As
mentioned previously, the magnetic current M corresponding to a
quanti zed equivalent source in the slo t  is gi ven by

f ~ ~ ~)o~y) for t he magn et i c l i ne source corres pon d in g
= to the axial slot or TMz case. (9)

M o(x)o(y) for the magnetic line dipole corresponding
to the circumferential s lot  or TE~ case.

it )



in which M is the amplitude of the source which is assumed known and
~(x)tS(y) is the two-dimensional Di rac delta function. The corresponding
f ields for the two s lo t types are

= {::} ur + u~ + 4 for
{ 

~~ and U (10)

The source V in Equation (9) for the TE~ and TM~ cases is explicitl y
defi ned . The quanti ty R(~ ) in ~r for the TE z and TMz cases is givenseparately in Equations (A-26) and (A-45), res p~ctivel y of Append ix I .
The diffraction coefficient D($) appearing in ~ 2 above i s presented
separately for the TE z and TMz cases in  E quat i on~ (A-74) an d (A—97),respectively of Appendix II . One recalls that u? 2 also  requ i res an
explicit know l edge of u1 (Q1 2) wh ich in turn requires a knowledge of
Lsw and ~ as men ti oned i n E~uation (8). These quan t i t i es are ex p l i cit l y
given in Appendix I by Equations (A-27) and (A-19) for the TEz case , and
by Equations (A-46 ) and (A-40) for the TMz case.

B. Analysis of the Circular Cyl i nder Antenna Conf jgura t ion

There are s~~e essential differences between the radiation mechanisms
pre sen t in the p lanar  an tenna conf i gura ti on of Fi gure 1 whi ch was
analyzed in part A , and the cy l in dr ical  an tenna conf igura t ion  of Fi gure 2
which is analyzed below. These differences will become evident in the
fo l lowin g discussion . As mentioned earlier , the magnetic current V
corresponding to a quantized equivalent source in the slot aperture is
given by

z, for the ma gne tic l ine  source
or the TE case.

_ _ _ _ _ _ _  
Z (11)

~~, for the magne ti c l ine  dip ole
or the TM

~ 
case.

The boundary SBQ’ in Fi gur e 6 const it utes the sha dow bou ndary for the
source V at Q’. The f iel d ra d ia te d by the source M a t Q’ may be
obta ined via GTD in terms of a s~perposition of the fields of the raysd i rectly radiated by the source M , and the f i e ld s  of the rays which  are
dif fracte d from the ends of the surface im pedanc e patc h at Ql an d Q
respectively as shown in Fj~gure 6k,. The f i el d di rectl y radiated by
i s denote d by 

~~
‘
; whereas u~ an d u~ re presen t the f ie l ds di f frac ted from

Q1 and Q2, alon g direct~ray paths ~o th e observat i on poin t  P , as i n
Figure 6a . The fields 4 and u~ may be assumed to be produced by
equivalent magnetic line sources or line dipoles at Ql and Q2, respecti vely.
Hence , the boundaries SBQ1 and SBQ2 i l l u s t r a ted i n Fi gure 6 corres pond
to the shadow boundaries of equivalent sources of the diffracted fields
at Qi an d 

~~ 
respectivel y .

11
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Figure 6. Rays ond ~hadow boundaries associated with the
cylindrica l antenna configuration of Figure 2.
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As in the planar case , the type of impedance surface chosen is such
that it supports an Elliot type surface wave node whi ch propagates along
the impedance surface from the slot to the ends Qi and Q2 of the patch
with negligible leakage (provided th~,.cylinder is sufficiently large).
The Elliot mode field is denoted by u~, and it ’s propagation path is
illustrated in Figure 6. The field ~‘ impinges upon the termination of
the surf~ce imp~dance patch at Qi and Q2 to produce the diffracted
fields i~ and i~9, respectively which traverse the direct ray paths
Q1P ~gd 02P to the observation po i nt P . However , in addition to u
and u~, there exist an additional class of diffracted fields resul ing
from the diffraction of creeping waves that are excited at Qj and Q2;
these creeping waves propagate over the perfectly -conducting portion
of the cylinder . Sufficiently far from Ql and Q2 the creeping waves
are expressed in te rms of a rap i dl y converging set of surface ray modes
whose amplitudes decay exponentially due to a continuous shedding of rays
from the surface ray mode fields (via surface diffraction) along the
forward tangents to their surface ray paths on the perfectly —c onducting
part of the cylinder. These surface ray modes were introduced by
Keller [1] to analyze the diffracti on by smooth , convex cylinders via
GTD. The surface ray modes are also commonly referred to as Watson
modes [5]. The fields of the surface ray modes are denoted by U~jW and
~~ W ; whereas, the fields of the rays diffracted from these surface ray
mod~s are d~noted by ~~

d and ~~d , respective l y. The rays corresponding
to ~~ and u~W travel in oppos i te directions along the perfectly —
conducting portion of ~~ cyli~d~r as shown in Figure 6. The d i ffracted

• rays corresponding to ur and u~ are also illustrated in Figure 6. In
p~rticular , one notes that the rays corresponding to the diffracted field
u’~f 2 exist on the lit side of the shad~w ,boundary SBQ1 

~
; whereas, the rays

co~responding to the diffracted field u~”~2 exist on the shadow side ofSBQ1 ,2.

The ray descri ptions 
~ 2 and on either side of the shadow

boundary SBQI ,2 fail at and ~n the ndghborhood of SBQ1 ,2. Therefore , a
uniform approximation for the field which remains valid within this
transition region adjacent to SBQ1 ,2, and which reduces to 

~~ 2 
and• 

2 outside the transition region in the lit and shadow sided of
SB~1 ,2, respectively is presented in terms of the FocI~ integrals [5].One notes that in addition to the Elliot mode field t~’ excited by Von the curved impedance patch , there also exist a set of Watson type
modes which leak off energy via diffraction from the curved impedance
boundary as they propagate from the source V at Q’ to the ends of the
impedance boundary at Qj and Q2. The existence of these Watson type
modes is not indicated in Fi gure 6 because their diffraction effects
will be assumed to be neg li gible in comparison with those due to the
Ell iot type mode. The Elliot mode propagates wi th very little leakage ,
hence it may be assumed that this mode is the dominant contributor to
the field on the curved i mpedance surface which is incident at Ql ,2.
While the assumption that the leakage from the Watson type modes being
small may be true only for a certain range of parameter s (such as those
involving the value of the surf ace impedance , Z s; the length of the
curved impedance surface section ; and the curvature of the cylinder) ,

13
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the present analysis is based on this assumption being true’~ There is
also a transition reg ion adjacent to the shadow boundary SBQ ’ associated
with the source V at Q’. One notes that the ray field ~ “ far from Q
vanishes along SBQ ’ ; this may be verified via an asymptotic sol ution to
the canonical problem of Fi gure 7 as gi ven in Appendix III. Thus , since

LINE
SOURC E ’ ..~~I

— 

(p,4 )

‘
~ -SURFAC E IMPEDANCE Z,�O

Figure 7. Geometry of the canonical problem of a line source
(or thin slot) on a circular cylinder which is
completely covered with an impedance surface.

the leakage or surface diffraction effects of the Watson type modes is
neglected , and ~r is continuous everywhere (~ven near the boundary SBQ ’
where it vanishes ) on the lit side of SBQ’ (ur ‘

~ 0 on the dark or shadow
side of SBQ’), no uniform approximation for the fields is presented
within the transition region adjacent to SBQ ’ . However , one would have
to modify ~~ if the leakage of the Watson modes from the impedance surface
is included . This modification would provide a uniform approximation with-
in the transition region adjacent to SBQ ’ ; such a uniform approximation
invol ves a modified Fock integral . One notes that the inclusion of the
Watson modes also requires that their diffraction from the ends of the
impedance patch at Qi and Q2 be included . Furthermore , a uniform ap-
proximation to the diffraction of these Watson modes from Ql ,2 must then
be included within the transition regions adjacent to SBQ1 2’ otherwise ,
a discontinui ty in the field pattern would result across S~Ql ,2. The
inclusion of the effects of these Watson type modes on the curved impedance
section is proposed as part of the future work dealing with refinements
and extensions to the present work .

By dividir .g the space surrounding the cylin der in~o six regions as
indicated in Figure 6, one notes that the total field u radiated by the
slot may be given within each of these re9ions I , II , I~I , IV , V , and VI ,
respectively, in terms of the ray fields P’, ~~ and as follows .

2

*Une mT~ it expect this assumption to be fairly accurate for sufficiently
large cylinders and for impedance patch lengths which are small in
comparison to the size of the cylinder.

14



- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-.

~r ~d ~ “~sd ~sdU + u1 + u2 + u1 + u2 , in region I

“sr ‘~d ~sdu + U
1 

+ u2 , in region II

‘~d “~sdu~ + 02 , in region III

~sd ~sdU
1 

+ U
2 

, in region IV

~sd ~du 1 + u2 , in region V

~r ~sd ~du + u1 + u2 , in region VI (12)

As noted previously , ~ = E~ in  the TM z prob lem ; whereas ,~ 
= H

~ 
in the

TE~ probl em.

The fields ~~~W and ~~w im p i nge u pon the discont in u i t i es i n surface
impedance at Q2 and QI. after being launched from Ql and Q2, respectively,
thereby giving rise to further reflections and diffractions . However ,
these diffraction and reflections of u~~ and ‘~‘ from Q2 and Ql,
respectively are neglected in the present analysis since the fields

are exponentially decaying fields , and for sufficiently large
exi~ursions of the ray paths from Qi to Q21 and vice versa , over the
perfectly conducting portion , the fields 

~r2 are small enough to where
their diffraction effects at Q2 ,1 become eve?~ smaller . The cylinder is
taken to be sufficiently lar9e electrically in the present analysis ,
so that the diffraction of ~~~ from Q2 1 is indeed negligible in corn-
paris on to the other diffraction effec~ being considered . Also , multiple
reflections of the Elliot mode field ~ can occur between Ql and Q2 on
the impedance surface . The inclusion of these multiple reflection-
diffraction effects is discussed later in Section III.

The f i e l d s  ~I’ and ~ whose ray paths are indicated in Figure 6 may
be found from the solution to the canonical problem of Fi gure 7 as given
in Appendix III. Following the represent~tion for ~ for the flat surface
case of part A , one may likewise express iP’ ray-optically as

—jks ’
~r(p) ‘~C~ M ~~~~~~ ; P in lit region of Q’ . (13)

The distan ce s ’ = Q 1P , an d C0 has been defined earlier in Equation (4).
The radiation coefficient R(~) in Equation (13) is the same as that in
Equation (3) for the planar case; this result could have been directly
predicted via the geometrical opti cs ray approximation without having
to solve for ~1r as in Appendix III. Choosing the origin as the phase
reference allows one to express ~ as

15
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C0 M R(~) ~
jkac0~~ ~~~~ ; (14)

where the angle ~ is illustrated in Fi gure 6.

Next , the Ell iot mode field d ’ on th e curved imp edance surfa ce
which irriv~s at Ql or Q2 from Q’ may a l so  be expressed in  a f ash i on
similar to u~ for the planar case (see Equation (8)) as

2~Ji (Q 1 2 ) = C0 M L ew e ‘ ; t1 2  
= length Q’Q 1 2  . (15)

The quan t i t i es L ew and y are the Elliot mode launch ing and propagatio n
coefficients , respectively, which are found in Appendix III.

The f i el d ~ wh i ch is incid ent at Ql 2 produces diffracted rays
wh i ch emanate from Ql ,2 as ment ioned earlier . For a suff i c i entl y large
cylinder , the nature of the diffracti on of the El liot mode from Ql ,2
may be assumed to be locally the same as that in Figure 5 for the planar ,
two—part impedance surface , except in the transition reg ion adjacent
to the shadow boundary SBQ1 2 and on the shadow s i de of SB~1 ,~ below thetransition region (wherein ~he surface diffracted field 

~ 2 is the only
ray field present). However , even within the transition r~g i on adjacent
to SBQ1 2 and on the shadow side of this transition region , one may
indirectly employ the surfa ce wave diffraction coefficient for the planar
case of Figure 5 to obt~,ig an equivalent magnetic current sou rce at Ql ,2
which in turn produces u~~2 and the transition region field . The
equivalent current is a magnetic line source for the TEz case; whereas ,
it is a magnetic line dipol e for the TMz case. This “equivalent” source
is inhornogeneous since it is a function of 61 or 62, i.e., it depends onthe aspect , • , and it is regarded as the source which produces the
diffracted fields . Let the equivalent magnetic current at Ql ,2 bedesi gnated as ~~q , where

5 (p—a)6(~ —~ )

~
‘l Mr (61 ) 

° ; at
= (16 )

e ____________02 ~2~(62) , at

and

z, for TE casJ 1~, for TE case
U
1 

= 
~ 

= (l7a ,h)
for TM

~ case J ~t 2 , for TM
~ 

case
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in which 11 ,2 is the unit vector at Ql ,2 as shown in Figure 6. The

strength M~~2(61 2) of the equivalent source ~~q is evaluated in
Appendix IV ’whic f~ deals wi th the solution 

to the canonical problem
of Fi gure 8. Since the details are presented in Appendix IV , only the

LINE SOURCE

U

~~~~~~~~~~~~~~~~~~~~~~~~~~~ UT SIDE OF SSQ 1

TO P ON
SNADOW SIDE OF SRQ~

Fi gure 8. Geometry of the canonical problem of the diffraction of
an Elliot mode by a discontinuity in surface impedance
on a c i rcul ar  cy linder.

final r-~su1ts ~or the diffracted ray fields 2 and which ~re
produced by ~~~ at Qi 2 are indicated dbelow . 

One recalls that 
~Y 2 exists

on the l i t sideA of SB~1 ,2 ; whereas,~~ 2 exists on the shadow side ’of SB~~,2.
The ray field iT~ 2 spreads~cylind~~calTY outward from Ql 2~ 

For the s~ke
of brevity , the form s of 

~ 
and 

~ 
will be ind icated be’ow; however ~ and

have exactly similar forms (and may be obtained by replacing the
subscript 1 by 2).

—jks1
u~ (P)  ~ C0 M~~

(a 1 )R~~(6 1 ) 
~~~ 

; P in the l i t  side of SBQ 1
1 

(18)
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The distances s1 and S2 correspon d to Q1 P and Q2 P , respectively , as
in Figure 6~ and the ang les 6 -j and 62 are also shown in Fi gure 6. The
quantity ~e~(61) is the radiation coefficient of the source

6(p—a)6 (~,—q )
~{eq 0

1 p

at Qi . and it is specified in Appendix IV . However , since 4(P) is a
d i ffracted ray f ie l d , it is more appropriate to represent it in terms
of a diffraction coefficient rather than a radiation coefficient. In
fact, it is shown in Appendix IV that

c0 ~1
q
2 R~~~61 ,2

) = (Q 1 2 )D(61 2 ) (1 9)

where U is same as the diffraction coefficient in Equation (7). Thus ,

- 
—jks1

~~( P)  ~ ~f(Q1 )D(o 1 ) 
e ; P in the l it side of SBQ1(and 0 < 61 

< ~r) (20)

as in Equation (6) for the planar case. In the far zone , one may wr i te

• jkacos(4’4 ) —jkp

~ ~r
1 (Q )D(6 ) e ° ~~~-~~~~~- . (21)

One notes that ‘
~ 0 for 61 > ~r ; this is consistent with the assump-

tion that the curved surface diffraction effects of the Watson type modes

~excited by M~1) on the curved impedance patch are negligible.

The surface diffracted ray field excited by M~~2(61 2r0) over
the perfectly-conducting surface is give,~ by Pathak and ~ouyo~mjian [6]
as

d N — [c& +jk]~.1 
— jks1

“~ C0 M~~
( O ) 

P~l 
L~ (Q 1 ) e D~ (T

1 ) 
e

when P i s on the shadow s id e of SBQ 1. (22)

Only ~~d is indicated above , and ~~d is similar to The distance

~i 2 = arc length Ql 2Tl ~~~. The distance S1 2 = T1 2P where 11 2 is thepo~nt of d i f f r a c t i o n ’or shedding of the surface diffracted ray field

~L2 
and Ql ,2 is the launching point of this surface diffracted ray f i eld

18
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as indicated in Fi gure 6 . L~ , D0 and 
~
p are the launching , diffractior

and attenuation coeff ic ients of the pth surface ray (or Watson) mode;
these are discussed in [6] and are also introduced in Appendix IV . In
numer ical calculations , the inclus ion of onl y the first couple of modes
(p=l ,2) is sufficient to obtain good accu racy provided P is outside the
trans ition region adjacent to SBQ1 .

One may now spec i al i ze the a ho. e results to the ax ia l  s lot  (or
TE 2) and the circumferent ial slot (or TM2) cases , respectively. The
magnetic current V at Q’ cor res pon di n g to the two types of s lo ts  i s
defi ned in Equation (11) in which M is the amplitude of the source which
is assume d known . The total field , ~ radiated by the source V is obta i ned
from Equation (12) after noting that

- 1 E~ ITM
= 

Z 
, for the ~ Z cas es ; and 0 < ~ 2ir . (23)

~
TE Z

The total field ~ in Equation (12) - i s compose d of 1r , ~d 2 and ~sd
2

The diffracted f~el ds ~ 2 and ~sd in turn are ex presse~ i n term
of ~

1 (Q 1 2~ • Finally , one recalls that the expressions for ~r ~d 2’
and ~1

1 (Q
1 2~ 

contain quant i t ies R(~ ), Lew : Y M1 2  (or ~~
q ),

~eq , 0, L~ , D0 and ap . In part i cu l a r, R(~ ) in ~ i s given  by Equat i ons
(A—l25~ an d (~ -140) in Appendix III for the TEz and TM2 cases , respec-
tively. The L ew and y are given in Appendix III by Equations (A—123)
and (A-l24) respectively for the TEz case; whereas , they are gi ven
by Equat ions (A-138) and (A—l39 ) respectively for the TM z case. The
strengtn of the equ ivalent current M~

12(6 1 2) is given by Equations
(A—145) and (A—l52) for the TEz and TI~I~ ca~es , respect ively in
Appendix IV . Also given in Appendix IV are the expressions for ~eq ,
L~ , D~ 

and for the TEz and TM2 cases , respect ively; specifically,
one is referred to Equations (A—143) , (A—144b), (A—l49), (A— 15l ),
~~-l47), and ~A— l55) for these expressions. Also , the B ap pear i ng in

2 and i n ~1~ 2 (of Equations (A-l45) and (P~-.152)) is given by Equations
(A!74) and (A— ~7) for the TEz an d TM z cases , respectively in Appendix I~ .

F i n a l l y , one notes that the ray fields 
~~ 2 and 4,2 on the l i t

and shadow sides of the shadow boundary SBQ1 ,2’are not valid within
the trans i t ion reg ion adjacent to SBQ 1 ,2. The angular extent of the
trans ition region is O [(ka) l/3] radians . Follow ing a generalization
of the analysis in [6] which is based on the results of Ivanov[7],
one obtains the necessary

d
m odif ic

~
tion s which constitute uniform approx-

imations for the f i e ld s  and i~~ ii tne t r ans i~ ion region by fi rstly
replac ing the expression ~~ EqI ~~ion (22) for E~ w i th

__ J



~Sd (p )  ~ C0 Mr 
~ 

_ _ _  

e~~~~
1 e~~~~

1 
; for~~~~4 case , (24)

and by replacin g the expression in Equations (18) or (20) for with

~3

—3-—
g(~ 1 ) e —j ks

1 ITE
~ 

~4eq e 
— for Z case. (25)1 o 1 

./~
___ 

~ TM
2

~~~~ ~~~-j-——-—- em

Equation (24) for ~~d is to be employed for P in th~ shadow zone of
the t rans i t ion  region ; whereas, Equation (25) for 

~ 
i s to be employed

• for P in the lit zone of the transition region. The Fock funct ions
g( .) ,  a’id ~

‘ ( - )  are defined in [6]; they are also defined and tabulated
in [5].

m2~
= —~~~~- ; 

~ 
= — m cos (

~- — 6 1 ) 
‘ 
(6l <~~ 

in transition region)

(26a,b)

and

k 1/3
m (.4) . (27)

Al thou g~• the above field expressions in Equations (24) and (25) are
assoc iated with the transition region adjacent to SBQ1 , s i m i l a r  ex press-
ions apply to the transition region adjacent to SBQ2. I t was mentioned
prev i ousl y that M~~2(61) is inhomogeneous , i.e., i t de pends on the
aspect ~ via the at~gle 

~
-i 2 (see Equation (19) for example); however ,

it is important to note t~iat wh ile f~
q
2 in Equations (18), (19), and

(25) depend on 6 1 2 ; the ~~~ in Equations (22) and (24) is evaluated
at 6 1,2 = 0 as indicated in ’detail in Appendix IV.
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III. NUMERICAL RESULTS AND DISCUSSION

Numerical results for the radiation patterns of the antenna con-
fi gurations of F ig ures 1 and 2 are presente d in th is  section ; the
patterns have been calculated via the GTD results which are deve l oped
for these confi gurati ons in Section II. The radiation patterns for the
axial slot or TEz case are presen ted for the p lanar  an d cy l i n d r i cal con-
figurations in Figures 9—15; whereas , thos e for the c i rcumferent ia l  slot
or TMz case are presented in Figures 16—20. These patterns are normalized
to 0 dB at the i r peak value .

The resul ts of the GTD calculations are compared against
corresponding results which are obtained via an i ndependent calculation
based on a combination of the method of moments (MM ) and the GTD; the
la tter method abbreviated as MM-GTD as applied to the antenna configurations
of Fi gures 1 and 2 is discussed in a separate report [8]. The MM—GTD is
also an approxima te method ; however , i t  is expecte d to be sl i ghtl y more
accurate than the initi al GTD analys is presented in this report. It is
noted that in general , the resul ts obtained by the present GTD analysis
agree well with those obtained by the frTl-GTD analysis of [8].

In general , one no tes that increas i n g the s i ze of the i mpedance pa tch
i ncreases the number of pattern r i pp les in  the l i t region (i.e., in
the region of space where the slo t i s di rec tly visible); whereas , incre as in g

• the size of the cyl i nder tends to decrease the level of the radiation
pattern in the deep sha dow region of the slot. Over the range of imped-
ance values considered in the present calculations , one notes that i n-
creasing the value of the surface impedance for the TEz case i n general
increases the s i ze of the pattern ri pp le i n the l i t  reg ion ; whereas , the
reverse appears to be true for the TM2 case.

The hi gh l obe structure caused by the use of the surface impedance
patch is a direct consequence of a poor impedance match at the edges of
the patch. This is harmfu l for the TEz case but i t is a disaster for
the TM2 excitation. Tapering for impedance matchin g purpose has been
used in the other report [8] but it would not be of any real import
as it was used in so far as the TMz geometry is concerne d s i nce the
presence of the zero surface impedance would always cause a strong
refl ection. Considera tion shoul d be given to terminating the structure
in an im pedance surface whose value is chosen so that no surface wave
exists. This should force the energy off the surface and in the desired
di rect ion wi th  m inimum back reflection as is the case in corru gated
horn struc tures .

The GTD method presented in this report yields a simple and
e f f i c ient proce dure to anal yze th e ra di ati on pa tterns of the an tenna
confi gurat i ons in  Fi gures 1 and 2 ; fur thermore , due to the local  nature
of the 6Th , it provides a physical insight into the radiation mech-
anisms involve d. The numerical results indicate that this method
in deed works well . However , some refinements an d mo difi cations of
the present anal ysis are required to make the present SIB analysis
useful an d more accura te un der gen eral con diti ons . Fo r exam p le , i t
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woul d be worth investigating the following topics in this connection. It
is of interest to investigate whether a more accurate representation for
the fiel ds on the impedance surface region w o u l d  improve  the GTD anal ysis
for smaller size impedance patches , and even smaller size cy l i n ders . In
the p l anar  cas e, one notes that the poss ibi l i ty of mul ti p le sur face wave
ref lect ion - di f f rac tion ex i sts , an d th i s i nteract i on coul d be qu it e
important i f the sur face wave re flec ti on coeff i ci en t at the en ds of
impedance patch is lar ge . When i ntera ct i ons are i mpor tant , it is im-
portant to have an accura te representation for the surface field which
imp inges on the ends of the impedance patch; otherwise , the errors
coul d accumulate wi th the inclusion of each higher order multiple
interaction. Furthermore , for the size of the impedance patches considered
in the present calculations may not be long enough to assume that the
space wave component of the field of a slot in an impedance surface is
vanishin gly smal l  at the en ds of the patch , hen ce some errors could
result from not employing a more accurate representation for the field on
the im pedance surface in this case. One notes that onl y the surface wave
mode or the Elliot type mode field is assumed to exist over the planar or
curve d im pedance sections , respectivel y, i n th i s study however th i s  may be
tr’ie orly for large size impedance sections. In t i matel y tied in with this
improve d surface field calculation is the inclusion of the effects of the
Watson type modes on the curved impedance section to obtain a better surface
field representation in this case; however , since a ca l cu l a t i on  of the
propagation constants of these Watson type modes could present some
numerical problems for certain values of the surface impedance , an alterna-
tive surface field expression involvin g a modified Fock integra l for the
curved impedance surface should be investigated . Of course , one woul d
have to look at ways to approximate this Fock type integral for the field
on the curved impedance surface for ease of numerical computations.
Furthermore , the inclusion of not only the Elliot mode , but a lso  the
Watson modes on the curved impedance patch leads to a more complicated
anal ysis for the di ffraction of the Watson modes from the ends ol the
im pedance patch; in  par ti cular  the ana lys is  of this  p roblem i s more
complicated within the trans i t i on re g ions adjacent to sha dow boun dar ies
SBQ1 and SBQ2 (see Fi gure 6), than that  presente d here for only the
E l l i o t  mode case. The diffraction effects of the Watson type modes
are assume d to be neg l i g i b le in the present ana lys i s ;  the con d i ti ons un der
wh ich this assumption is true needs to be more carefully investi gated .

I t would be i nteres ti n g to stu dy the transition region problem
associated wi th the diffraction of the Watson type modes over a curved
im pedance patch , as it is the dominant effect within this transition
reg ion for curved impedance sec ti ons which  do not su pport an E l l i ot
type mode (e.g., a capacitive reactance surface in the axial slot or
TE z case). Some of these problems will be investiqated in the future
phases of th i s stud y .

These proposed modifications are expected to further improve the
accuracy of the GTD calculations presented in this section , i n ad d i t i o n
to mak in g th e GTD me tho d work un der somewh at more general  condi ti ons
wh i ch may be encount ered i n prac t ica l  antenna pro b l ems of the type shown
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in Figures 1 an d 2. Wh ile the use of the MM—Gb method for analyzing these
problems [8] is far more efficient than the conventional 141 techniques ,
it is less efficient than the analys is based on just the GTD alone. At
the present , the 141—GTD method is applicable under more general situ-
ations than those presently handle d by the GTD , e.g., i t  is applicable
to varia ble curvature cylinders and variable surface i mpedance cases ;
furthermore it is applicable to the cases in which the surface impedance
does not support surface wave , or Elliot type modes . Some refi nement s are
also required in the MM-GTD methods as pointed out in [8]; these refine-
ments will also be studied in addition to the continuing GTD study of
the antenna problems of F i gures 1 an d 2. In conclusion , the GID metho d
does show promise of be ing a usefu l method in analyzing the antenna
problem s of Figures 1 and 2.
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APPENDIX I
AN ANALYSIS OF THE CANONICAL PROBLEM OF THE RADIATION FROM

A L I N E  SOURC F ON AN INFINITE PLANA R IMPEDANCE SURF A CE

The geometrical configuration of the problem is illustra ted in
Fi gure 4. A magnetic line source at 0 excites this configuration of
interest. This line source is designated by ~, and it represents
a i—directed quantized , equivalent magnetic line source for the axial
slot (or the TEz) case; whereas , it represents an x-directed quantized ,
equivalent magnetic line dipole source for the circumferential slot
(or TM~) case. The TEz case is treated fi rst; it is followed by a
s im i lar analysis  for th~ TMz case .

TE
~ 

or the axial slot case

The magnetic line source ~T is specifi cally given by

= z M 6(x)6(y) (A-l)

where the strength M is assumed known . The magnetic field radiated by
this source jn the presence of the infinite planar impedance surface

• is entirel y z-directed (hence the fields are TE~ type). Let this
ma gnetic f iel d be denote d by h~. hz sa t i s f ies  the reduced , i nhomogeneous
wa ve equat ion , an d the fo l lowin g boundary conditions .

(v~ + k2) h
~ 

jkY0 H 6(x)6(y-h) ; h-~0 and y>O; xI<’°. (A-2)

ah 7
—

~
- -  = jk 

~~~~

- h~ , at y=0; Ix~<°° and Z~ i s the
-
~ o surface impedance value. (A-3)

One notes that  V0 free space admittance and Z0 = Y0~~. V~ is the two
dimensional Laplacian operator . Also , hz sat isf ies the radia t ion
condition as p-

~~. The solution to a similar problem is discussed
elsewhere [9,10]; however , a method of solu ti on based on Green ’ s functions
is presented here for the sake of completeness. Onl y the si gni fi cant
steps in the analysis will be indicated for the sake of brevity . Let g~denote a Green ’ s function which sat isf ies the following equations :

(V~
2 

+ k2)g(~ ’~~) = - 6 ( > . ’ - x ) -5 (y ’ -y ); (y,y ’ )>O , J x ,x ’~ <~ , (A-4)
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where is the 2—D Laplacian in the primed coordinate system (x ’,y’).
= xx + y~

; whereas p ’ = x ’ x + y ’y .

Z
= jk .

~~~
. 

~~ at y ’ O , tx ’ ~<oo (A—5)

Also , g~ satisfies the radiation condition. Utilizin a the two-dimension al
Green ’s theorem and the reciprocity condition g~(P

’ Ip ) = g~(P!c’’), Ofl C
ob ta ins

h~ (x ,y) = — jkY0 H g(x ,y~O,h); 
h-’~0. (A—6)

Using the procedure for cons truct i ng hig her dimens i onal Green ’s func ti on
as in [10], one obtains

= - ~~~~~ - 
~~~~~ ~~~~ (x ’~ ~~~~~~~~~~~~~~~~ dA (A-7a)

c
~

where the one dimensional Green ’s functions gmx and g
~ 

satisf y the
fol1ow~ng differential equations and boundary conditio~s:

+ A~)g~~ 
= - ~(x-x ’); (

~ 
+ 

~y)g~y = - 6(y-y ’) (A-7 b;A-7c)

and 
~rny sa t i s fy  the

rad ia t ion  cond i t ion at ~
-‘

~~; 
= jk .

~~~
- 

~~~ 
at y=O . (A-7d;A-?e)

In addition

+ X = k2. (A-if)

The contour c~ encloses only the singulari ties of g~x 
in  the comp lex 

~plane. 9mx and 9my are found to be

- 
.

~~~~

— 

~ ~~
‘ 

-j/~
’(y-h)

e
3 x e y + R h e Y

mx = 
2jVT ~ ~~y 

= 
2jV~~x y (A—7g;A— 7h)
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-In which y > h ~ 0. The contour c~, runs in the counter—clockwise sense
around the branch cu~ sin gularity of gmx alon g ReA x > 0. Introducing
the transformation k

~ 
= one obtains

-jv~~ (y-h) -j/~~(y+h)

1 e + Rhe 
y -jk xj

~~(x ,yIo~h) = 

-~~-JL  

dk
~ 2/c 

e

(A-8)

in  wh ich  x ’ =O , y ’ =h , and y?h~O. A l s o ,

- ~~~~~~ - 
k Z~/Z0 ~k

2
~k~ - k

+ k Z
~

/Z 0 ~k2
~k~ + k Z~ /Z

The contour of inte gration in Equation (A-8) is illustrated in Figure
A-l . The branch cuts in Figure A—i are chosen such that Im /3 <O. It
is conveni ent for subsequent evaluation of Equation (A-8) to introduce
further transformati ons

I m X ~

~~- CONTOUR OF
~~~~ I NTEGRATIO N

— -
________________ ~

. R~ K

E

Fi gure A-l. Contour of integration in the complex k
~ 

p lane.

x = p cos~ ; y = p s in~ , (A—b )

and

k
~ 

= k cos~ ; = ~k
2
~k~ = + k sine ky (A-il)
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The Green ’ s fu ncti on g01 of Equation (A—B) 15 HOW oxpresst’tI In the
complex 1~ pidn e as

1 ( [~~jkp 1cos(~-~) -jkp 2cos(~-~~] (I\-12)
gm

(x tYlo~
h) = - 

~~~~~~ 
j  

d~ +R h (~ )e 
J

where

y ~ h E p
1 s in~ ; an d the correspon d ing J x ~ E p

1 cos4’. (A-13a;A—l3 b)
2 2

One notes that p
1 

-
~~ 

p as h -
~~ 0. Also ,

2

sine - Z /Z
Rh(

~
) sine + . (A—14)

The contour of integration c is indicated in Fi gure A-2. The inte gral
in Equation (A—l2) may be evaluated for large kp1 via the method of

steepest descent. Thus, the contour c is deforme~d into the steepest
descent path SDP through the saddle point .

Im~

Re ~

~~~~~~~~~ 
•Cj •Ct 1~ —~~K~~s + $

I! SURFACE WAVE POLES -d ~uI l~ —.‘~x~~a — s
Pt

SDP N ORIGINAL CO NTOUR C
(MAPP ED FROM K~~TO ~ PLAN E)

Fi gure A— 2. Contour of integration in the ~ plane.
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= = tj (at the saddle point); O<~<w/2

if O<$< t/2. (A— l5)

The case 0~z~<~r/2 is treated here. (A separate analysis for w<+<w/2 is
not required since the results for this case may be obtained Trom those
for O<+<i~/2 by invoking symmetry.) In deforming the contour c into SOP ,
the poles o~ Rh (~ ) may be crossed , hence , their residue contribution must —

be taken into account. The poles of Rh(~) occur at

s i n ç = — Z~/Z0 ; such poles certainly exist if Z5 is chosenp to be jX~ where X L>O (i.e., Z~ i s an
inductive reactance). (A—l6)

= sin~ (-j XL/Zo
) at the pole 

~
=
~Pl for x>0 (A-l7a)

and

= ~ + ~l 
~ XL/Zo) at the pole ~

=
~P2 for x<O. (A-l7b)

Let

- 

- 

k cos 
~Pl = 

~ ; k cos 
~P2 

= - (A-l8a;A-l8b)

where

k~~~+ (X L/Zo)
2 , with  Z5 = jXL(XL>O). (A-l9)

Finally, a saddle point evaluation of Equat ion (A—l2) yields the following
for pole no t close to the sad d le poin t .

~~ ~~~~~~~~~~~~~~ s in ~~+~~5/l0 

~-~kP 
- 

~~ -~ y -jBjX ~

for O<~<i~/2 and Ii=0. (A-20)

— k2, (~>k), and ~ is defined in Equation (A—l 9). (A—2l)
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Al so,U in Equation (A-20) denotes the Heavis ide step function which is
uni ty for $< $c1 whereas it is zero for +>+cl • The angle $cb 1S
illustrated in Figure A-2. The fi rst term on the RHS of Equation (A-20)
is the so—called space wave contribution which vanishes alon g the
impedance boundary (at •=O , i T) ;  whereas , the second term is the surface
wa ve mode field which exists when Z~ = j X L ( X L~O). One may now f in d hz
in terms of Equation (A-6) and (A-20) to be

h
~

(x ,y) ~ u” + U1 (A—22)

where

= c0 H g(,) 
e~~ (A-23)

and

c H L SW 
~~~~~~ ix k ”  . (A-24)

y=O °

I t i s eas i ly veri fi ed tha t i f

c0~ _ f j~ ~~~ 
, 

(A 25)

then

= 2 sin~ = 2 Sin
~ . z = x

‘ / sfi,~ + Z /Z s in~ + ‘ s ~ L
S 0 and cz/ k = XL/Zo 

(A-26)

and

L
SW = - /Bitjk 4,~

2. (A-27)

where a an d ~ are given in terms of the inductive reactance Z~ = J X
L

( X E’O) in Equation (A-l9) and Equation (A—21).
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ThI~ or the circumferent ia l  slot case

The magnetic line source 11~ at 0 in this case is a magnetic line
dipole given by

= ~ H ~(x )~ (y) , (A-28)

where the amplitude H is a known quantity . The electric field radiated
by this source is entirely z—directed (hence , the f ie lds  are TMz type).
Let t h s  electric f ie ld  be denoted by ez . Then

(‘i~ + k2)f = — H ô ( x ) o ( y - h )  ; y >0; x j< 00  and h-~0 (A-29)

where

ez = - ; e~ ~ = - Vx (~f) (A- 3O)

and

~f is the electric vector potential.

The im pedance boun dary cond i tion 
~z 

= Y x Z~ Etan at y=O where Titan
is the tangential magnetic field at y=O corresponding to ez impl ies  that

= jk ..
~
2. 

~~ at y=O , J x <00 (A— ~ l )

Let ge be a Green ’s funct ion which sa t isf ies

(~~1 2 
+ k 2 )g~ (~~’ I ~

’) = - 6(x’-x)6(y’ -y) ;

y ’>O; ix ’ I<~° (A—32)

Z ~g
= jk .

~~

2. 
~~ 

at y ’=O; ix ’ <00 (A 33)

Z
The above Equation (A-33) could be simplified to ~—4. = jk .

~
2. 9e at y

’=O
y

by integrating with res pect to y ’ and requiring that and .
~-4 sat isfy

the radiation condition. One may show that
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f = H ~ (~i~’)  = H g~ (x oyio oh)~ h-~O. (A 34)

In obta ining Equation (A-34), use is made of the fact that ez, an d f sat isf y
the radiation con dition; also , ge is chosen to sa ti sf y the ra d ia t ion
condit ion . Following the procedure outlined for the construction of
9m i n the TE z case , one obta i ns

1 -Jk
g~ (x ,y !o ,h) = 

~~~~

- J 
—

. 

dk ,~ e 
X 

2jy J; y>h
00 3€: h-’O ,

(A-3 5)

where

= ~~~ /c ; R5 
- 

y+k z~~z~ 
(A-36a;A-36 b)

The contour of integration in Equation (A-35) is the same as in Figure
A -i. Transforming the above integra l into the contour integral over C
in the complex ~— p1ane of Fi gure A—2 via Equations (A-b ) and (A-li), one
obtains

a H r-j kp 1cos (s-~)
e~(x ,y) = — H .

~~~~
. g~ (x ,yIo~h) = — -i-— 

j  
d~ ks in ~ 1e 

+

R5e
3
~~2

C0
~~~~
J

(A — 37)

where p 1 2  are defi ned in Equations (A—1 3a;A-13b), and

sine — Z /L
O S  A38sfn ~ + Z /Z ‘

O s

One notes that R~(~ ) can certainl y have a pole when Z~ = — j X~~ (X c>O);i.e. , when Z~ is a capacitive reactance . Then , evaluat ing Equation (A-~7)
by the saddle point method while taken into consideration the residue
at the pole of R5(~) when deforminq c into SDP yields the following
result for pole not close to the saddle point , and for y-~O ( i . e . ,  

~i 2 ~~
)
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s in~+ja/k ~~. 
e~~~ -e~ (x ,y) — jkM 2~a/k

2
- j kM ~~

__ e~~~’38~~ h 1J(~~ l
_,); 0<~<iT/2. (A-39)

The results for ir’-~cii/2 are direct l y obtained from the results for
O~z~ <ir/2 above by inVoking symmetry . One notes that a and ~ i n Equat i on
(~-~9) are defined as

= a2 + k2 (~>k); a = kZ0/X~ 
= -jk Z0/Z~ (with Z5=

_jX~)

(A-40a;A-40b)

in which Z 5 = - JX c (X c>0) implies capaci t i ve reactance as in di cated earl i er.
One may rewrite Equation (A-39) as

e
~

(P ) ~ ~ + ~
i 

(A—4l )

where

= H R($) e
3
~~ = space wave (A-42)

and

SW -i~Ix i  —u = c H L e - surface wave mode field. (A-43)
!y=0 °

If c0 i ; defi ned as

(A-44)c0 ‘~8iT

then

(2 sin~ ) ( Z 0/Z5) = k?~~in~)çiaIk) (A-45)R($) = s i n ~ + s in $  + jcz/k

and
______ 

2
W r~~ aL5 = ~8iTJ~ (A—46)

8

in wh ich a and ~ are as defined in Equation s (A—40a;A-40b), with
Z = — JX (X ~O).S c c
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APPENDIX II
AN ANALYSIS OF THE CANONICAL PROBLEM OF SURFACE WAVE
DIFFRACTION BY A PLANAR , TWO PART IMPEDANCE SURFACE

The geometrical conf i gura t i on of th i s  ca~ion ical problem is il-
lustr ted in Fi gure 5. The incident field , u~ is a bound surface wave
mode which propagates along the surface impedance boundary (y=O , x<O);
and , it produces the reflected surface wave , and diffracted fields
0rsw and u~, respectively upon striking the discontinuity in  sur face
impedance at (x=0; y=O). One requires that the surface impedance be
purely inductive in the TE z case; whereas , it be purely capacitive in
the TM~ case ( to support th~ surface wave mode). In the TE z case , the
magnetic f iel d is entirely z—directe d ; whereas , in the TMz case , the
electric field is enti rely z-directed. Let

H’1 Hrsw Hd TE
u~ ; u”~~ 

Z 

,~d _ 
Z 

~ for case ,

E J  
E SW E~ TM

~

(A—47a;A—47 b;A—47c)

where Ez and Hz refer to the z—directed electric and magnetic field
intensities in the TM z and TE~ cases , respectively; also , the superscripts
1 , rsw and ci in (A-4 7a ;A— 47b; A— 47c ) stand for i nciden t, refl ected and

diffracted wave components , respective ly. The incident f ie ldK ~~~consti-

d I rsw~ 
Z

tutes a known excitation , an d the f ie l ds~ ~ and~ ~~~ 
can be found v ia

~~ j
the Wie ner—Hopf technique for solving the two part boundary value  p rob lem
of Figure  5. The TEz solution will be briefly outlined first; and a
s imilar outline wil l follow for the TMz case.

TE
~ 

case

The excitation i4 has the form

= e ”-~
’ 
~~~~ ; X~~<00 (A 48)

in which it is assumed that H~ exists even for x>0.
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= k 
~~ ~ i~~~2 

; a~ = ~2 - k2, (A-49a;A-49 b)

as in Fquations (A—1 9) and (A—21 ) for the TE~ case w i th Z~ = jX~ (X~>O)corrçspondin g to inductive reactance. In the following analysis an
~~~~ t ime  convent ion w i l l  be employe d for the sake of convenience in
us i ng t he W iener  Ho p f no ta t i o n ;  how~v~r , a complex conjugate of the
final results wi l l  yield back the e3

~~ time convention . The quant ity
= “—1 instead of j = /1 will be employed to dist inguish between the

two time conventions. Let H~ denote the scattered f ield, then the total
field , H

~ 
= H~ + I-1~. The tota l field Hz sa t is f ies

(V~ + k2) H
~ 

= 0; for y > 0, lx i  < 00 (A-50)

Z
= — ik  

~~~~
- H~ ; for y = 0 , and x < 0. (A— Si)

aH S z
Equation (A-Si ) implies that ~~~~~~ 

= - ik .
~~~

- H~ for y = 0, x < 0, an d

; f o r y = O , and x > O . (A — 5 2)

Equation (A—52) also implies that

aH S aH 1
— - —

~~~ f o r y = O , x > O .  (A-E 3)

H~ s a t i s f ie s  the r a d i a t i o n  cond i t i on  for e~~0Jt 
time dependence.

One may next define the following Fourier transforms .

00

= ..L.. r HS e~
5X dx = j S  + (A-54a)+ -

= 
~~~ J H~ e

lSX dx ; J~ f HS eISX dx (A-54b;A-54c)
v 2 ~ 0 ...00

1 r - - • -ay
h 1 

= _L._ I H1 e~
SX dx = ‘e _~_ , via (A—48). (A—55)+ 

~~
- I 

~ 
— -

- $ 7

L - - ~~~~~~~~~~~ -- --•--- -
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and H’ individually satisfy the wave equation in Equation (A—SO).
Fourier ~ransforminq Equation (A—SO ) for H~ instea d of H i,, one obta i nes

(~~~~~ 

+ A) ~s = o ; A = ~~~~~ j~~
2 k 2 (A-56)

i n which  Im V5~~~~ . The solution to Equation (A-56) in accordance with
Equation (A—53) is

= c(s) e1
~~ Y , y 0. (A- 57)

The inverse Fourier transform of ~ leads to H~ . Thus ,

H~ = _1~. J ~ e~~
5X ds . (A-58)

Incorporatin g Equations (A-48) and (A—58) in Hz = H~ + H~ which  a ppears
in the boundary conditions (A—Si) and (A—52) yields

f L (s)~ (s)e
5Xds = 0 , x < 0 ,

J ~(s)e~~~~ds = - a e~~~ , x 0 , (A-6O)

where

~ c( s)  (A—61)

and

L ( s ) = ______ = 
____  . (A-62)

V T — i a  t 2  2 -\~k -s -

The above set of dual integra l equations for •(s) ~n Equation (A-59)
dnd Equation (A—60 ) may be solved via the method of factorization [12].
.~ithout going through th€~ oetails , one ob ta ins
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L ( s)
c(s )  = —s-— - 

______ (A-63)
L(-~) ~k

2
~s
2(s+8)

in which

L(s )  = L~ ( s)  L _ (s) (A- 64)

define3 the Wiener Hopf factors L~(s) and L..(s) for the L(s) of Equation(A—62). L~(s) is analytic for Im s>O and L_ (s) is analytic for Im s<O .
Incorporating Equation (A—63) in Equation (A—57) and employin g Equation
(A-58) yields

= 
~~ 

L (s )  
— 1 

2 2 
e~~~

2
~~

2 
Y e~~~ ds . (A-65)

(s-s-8) ~k —s

The residue of the pole at s=8 in the integrand of Equation (A-65)
furn i shes the ref lected surf ace wa ve for x<O , whereas the pole at s=—8
furnishes the negative of tbe incident field for x>O (see Equation (A-48)
where it was assumed that H~ exists for ix 1<00) , and therefore cancels

• the incident field for x>O . The reflected surface wave field is

= R~ ~~~~~~ ; x < 0 (A-66 )

where

R 2

R~ = ii 
2 ~ Rh lini (s— B )  L (s )  = a—. . (A—6 7)

28[L÷(8)] 
B

Clearl y , R~ is the refl ection coefficient at (x=O , y=O) associated with
the reflected surface wave.

The di f f r ac ted f iel d , H~ may be foun d from an asymptot i c evalua ti on
of the integral in Equation (A—65) via the method of steepest descent.

this  end , one introduces the transformations s=kcosw , ds= -ksinwdw ,
~ k
2—s 2=ksinw , x=pcos$ and y=psin$ . Thus ,

s a L_ (kcosw) - ik pcos (w+$ )= - 

~~ J L (kco sw )(kco sw +~) 
e dw . (A-68)

cw
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The contour cw in Equation (A—68 ) is indicated in Figure A-3. The
contour Cw may be deformed into the steepest descent path (one notes
that the pole at s=+8 which may be crossed in the path deformation yields
H~SW of Equation (A—66) and hence this pole crossing will be ignored
since it ’s contribut ion has already been evaluated in Equation (A-66)).
Without any details for brevity , the resulting saddle point approximat ion
along the steepest descent path yields

Hd - 
a r~ 

i (kp - ~) L(-kcos~ ) (A-69)z 2~ ~~~ 
e L+(— kcos P) L +( kcosw~)( B- kc0siT

The quantity w~ in Equations (A— 68 ) and (A—69) is related to B via

B = kcosw~. (A—70)

One may rewrite Equation (A-69) as

+ikp
D*(~) 

e (A-7l)z
“P

where

= 
ae L(-kcos~) (A 72)

L+Nkcos~ YI +( kcosw~)(B-kcos~ )

The explicit form of the factors Li(s) may be obtained conveniently
from the procedures outlined in [13] or [14]. In the present instance ,
it has been found that the procedure given by Weinstein [14] leads to
simple and useful expressions for Li(s). Without going through the
deta i ls  of ob ta in ing  Li(s) via the method in [14], one may directl y
wri te the expressions for RH and D(~) correspondIng to the surface wave
reflection and diffraction coefficients in the eJWt time convention in
terms of the results for L±(s) as

2~
~~

- I d u - .  u
ii sinh u

RH = - l_%k e (A—73)

and
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. 7T

D( ) - e sinh~ 2cosh~(l +cos~)- 

~~~ cosh~-cos~~t (1 +cosh~ ) ( c~sh~+cos~)

2~+~J sinhu~~~~~ f ~~ u
0

wi th

= sinh~ ~ (A-7 5)

It is noted that RH and 0 in Equations (A-73) and (A-74) for the ~~~time dependence are the comple~ con jugates of R~ and 0* in Equation (A-67)
and Equation (A-7l ) for the e lut t ime dependence , respectively.

TM
~ 

case

The exci tation E~ in this case is given by

E~ = ~_ay+iBx ; xj <°° (A- 76)

in which it is assumed that E~ exists even for x > 0.

8 = k~l - (
~
) ; a2 = 82 - k2 (B> k) , (A-77a;A-77b)

as in Equations (A-4Oa;A-40b) for the TMz ca-~~ w i th Zs~ .jXc (X c>O) corre-sponding to capacitive reactance. Again an e~~
(
~t time dependence will

be emp loyed in the ana~y~is to follow ; however , the f i na l  resul ts  w i l l
be p resented for the e3~~ time dependence. Let Ez an d E~ .denote the
total and the scattered fields , respectively, then Ez = + E~ . T he
tota l f i e l d  E~ sat isfies

(V
~ + k2 ) E

~ 
= 0 ; f o r y > O , l x i < 0 0  , (A -78)

f o r y = O a n d x < O , (A-7 9)

E
~~~~

O ; f o r y = O a n d x > O . (A- 80)

E~ satisfies the radiation condit ion for e _ 1W t 
tim e dependence .(A-8l )
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One defines the Fourier transforms

= -

~~~~~ J ES eISX dx = + as in (A-54a) (A-82 )
v2w Z —

and

= J~ J E1 eISX dx = e~~~ , via (A-76 ) . (A-83 )
+ ,$-7•_ Z

E~ an d E~ individually satisfy the wave equation in (A-78). Thus ,
Fourier transforming Equation (A—78) for E~ instead of Ez yields

+ = 0 ; A = {k2~s
2 i~ s2~k

2 (A 84)

in which Inu/T > 0. The solution to Equation (A- 84) subject to
Equation (A—8l ) is

= A(s )  ~iVTy , y > 0. (A-85)

The inverse Fourier transform of Equation (A-85) leads to E~.

= ~~ f ~ e~~~
X ds . (A-86 )

One may incor porate Equations (A—76) and (A-86 ) in the boundary con-
dit ions of Equations (A.-79) and (A-8O) to obtai v :

J G 1 (s)A(s) e SX ds = 0, x < 0

f A(s) e SX ds = - ~~~ e~~~ , x ‘ 0. (A-88 )

where

H(5) ~A -ia = v~A H (s) , (see (A-62) for L(s)). (A-89 )
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Equations (A—87) and (A—88) are a set of dua l integra l equations for
A(s) which may be solved via the method of factorization as in TEz case
treated earlier . Without presenting any details for the sake of brevity ,
the result for A(s) is given by

- 1 G (s)
A (s)  = (s+~ ) G C—B) 

, (A—90)

wher€. G(s) = G+(s)G.js) in w~,i ch , G~(s) and G_ (s) represent the Wiener—Hofp factors of G(s). The /A in Equation (A-89) may be factorized by
inspection, and the factor ization of L(s) is know n from the TE z case;
thus the factorization of G (s )  is directly obtained . One may now write
Equation (A—86 ) as :

= 

~~ J ~~~~ ~~~ ~~~~~~~ 
Y 

~~~~ ds . (A-91)

As i n the TE z case , the pole of the integrand in Equation (A-9l ) at
s=-8 yields a residue contribu tion only for x>0 which exactly cancels

• the inci dent field for x>O . On the other han d , the pole at s=8 yields
the ref lected surface wave E~

SW for x<O.

E~
SW = R~ e~~

’ 
~~~~ , x < 0 (A-92)

where

R
R~ = e 

2 ~ R E lim (s—B ) 6(s) — ~~~-. (A~)3)
2~[G~ ( 8)] e s-~8 

B

R~ represents the reflection coefficient at (x=O , y=0) for the reflectedsurface  wave f i e l d .

The d i ffracted f i e ld  E~ may be obtained by asymptotically approxi-
mating Equati~n (A-gb ) via the method of steepest descent as doneear lier for H1 in the TE~ 

problem. Thus ,

+ikp
Ed 0*(,) ~~~~~~~~ (A- 94)
z ,—

‘-P

where

0* = 
ike~~~~ 

G~~-kco )G+(tc::w~1(B-kcos~) 
; B=kcosw~. (A-95)
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As in the TE~ case , the surface wave reflection and diffraction
coefficients RE and 0 may be explicitly written down for the e3~

t t ime
convention as

2~
_______  ~t r udu

it J sinil u

RE 
= j B1k

~,k~ 
1 e (A-96 )

and

2~

_ _ _ _  

LI udu 
+L  f 

udt~j 4 ( 
~ ~~~~

.. 2-ir j sinhu 2ii j  sinu

= 
. e ( sin$ j 2cosh~ e °

~~~~~ 
\cos hc-cos~ / Y c o s h~+cos~

(A-97)

where

= sinh~ ~~
- (A— 98)

and

RE and 0 for the e
3Wt time convention are the complex conjugates of

and 0* in Equations (A—93) and (A—95) for the e~~
(
~
t case , res pect i ve ly.

Im w

~~~~~~~~~~~~ ~~R e w

Fi gure A-3 . Contour of integration in the complex w-plane .
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APPENDIX I I I
SURFACE FIELDS IN THE CANONICAL PROBLEM OF A LINE
SOURCE ON A CIRCULAR CYLINDER COMPLETELY COVERED

WITH AN IMPEDANCE SURFACE

The geometrical confi gurat ion of the prob lem is i l l u s t r a t e d i n
fi gure 7. The line source is a magnetjc current 1~ which is either a
z—directed magnetic line source , or a $—d irected magnetic l i n e  d ipole ;
as before the former represents the source for the TE~ case; whereas ,
the latter represents the source for the TM~ case. The TE~ case is
treated f irst , and it is fol lowed by the treatment of the TMz case.

TE
~ 

or the axial slot case

The ma gnetic current M at Q’ in th i s case is

= H ~(p-a)d (~) , (A-99 )

and it generates only a z—component of the magnetic field which is
denoted by h~.

(V~ + k2)h = ikY H ô (p-a))~~~ > aZ P 0 ~ < 2ii . (A-lOU)

and

L~ 
- jk ~~ h~~ = 0 at p = a. (A-lOl)

Also , hz satisfies the radiation cond ition. Usin g the method of
Green ’s functions , one may obtain the following expression for hz :

h
~

(p,$ ) = - jkY0 H Gm(~i~ ’) (A— 102)
p ’ =a

where G,~ (
~‘i~ ’)  is a Green ’s funct i on wh i ch sat i sf ies the ra d ia t i on

con d i tion , and

(V ’ 2 + k2 ) G ( ~ ’L~) 
- ____________

in wh ich p is the position vector of (p,$); and likewise ~~~
‘ is the position

vec tor of (p ’,~~’) .  Also ,
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(A-lO4 )

w i t h

z
= ; Z = value of the surface impedance which

o ~ completely covers the cylinder;
Z0 = free space impedance . (A - b0 5 )

The solution to G~ may be constructed via the methods presented in [10] ;
thus

00_j~~ H(2)(k ~
- r v cosv(w- k-l )

m - rTa 
~~~ 

v
{L~~~i

(2) (k )]~ =a 
-

p (A l06)

where H~~~(kp ) is the cyl i ndrical Hankel function of the second kind ,
and of order v . One may write

cos~ (ir;i,i) = j + e Jv(2TH~~~ ~~~~~~~ (A-bO7)

Physica lly, the abo ve series corresponds to itiul-t iple encirc iements of tne
field around the cylinder in the azimuthal propagation representation
for Green ’ s function G~ presented in Equation (A—l06). Si nce one i s
interested in applying the results of the present analysis to perfectly
conducting cylinders wi th a surface im pedance cover of f i n ite ex ten t, the
effects of these multi ple encirciements will be neglected. Thus , for
the present purposes one writes

Gm(~
•

l~
”) = 

~~
(
~i~

’) + multiply encircling wave contributions (A- 1O8)

from which it follows that

- 1 H(2)(kp)J~~3 I +e 3 2uT~~~~~

I 
dv 1

~[[
J.. _jkA]H~,

2)(kp )~ p a
(A-log)

an d the f i el d h~ which corresponds to this non-encircling part is
Thus ,
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= - jkY0 H ~m~~~~I~~
0) (A—llO)

~epresents the non-encircl ing part of hz i n terms of 
~m ’ in which

G~(p,~~a,O) is given explicitly in Equation (A-log). Let

= + (A-ill)

where the terms corresponds to the clockwise circumferential propagat4on
term e 3’~~ I in Equation (A-l09), whereas i~~~ co~r~~pond~ to the counter-
clockwi se circumferentially propagating term e 3v~~wH~~l) in Equation
(A-109). Defining

l i s i  1 1/3
= ; = m4i~ ; m = (p.) (A - 11 2 ;A—l l 3 ;A —11 4)

1.2ir_ i~PIJ
and as~~min g that ka is sufficiently large , one may ap p rox i mate G

~ 
and

hence h7 on the surface p=a , with in the shadow reg ion of the source at
Q’ (p=a , •=O) as

~ c~ M~~~
jka* 

~~~~~~~~~. I J dt w2(T)e 3 1 (A- US)
p a  _ 0S w

~
(t)+im

~~~~
w2(t)J

in which

— (A-116)
o ~8w 0

and

H~
2
~(ka) ~~~~~w2(t); ~~~H~

2
~(kp ) - ~l~~ w~(t). (A-ll7a;A-ll7 b)

The variables v and r are related through the transformation:
v — ka (A—lllc)

w 2 ( t ) ,  and w~(T) are the Fock type Airy functions defined in [5]
(also see [6J). If the surface impedance Z5 is inductively reactive ,
then the large curved impedance surface wil l  support an Elliot type
mode mentione d ir~ Sections I and II. The field of this Elliot mode is
obtained by evaluating the residue of the integrand in Equation (A—ll5)
at r=t0 which locates the Elliot mode pole of
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1

w~(t ) +jm~~~ w 2 (t )

Thus ,

+ j m ~~ W
2

(-r
0
) = 0, at -t=r~ . (A-ll8)

While several papers have been written on the solution for -to in
Equation (A-118), the one which appea rs to have dealt with this problem
in greet detail is due to Logan [5]; and , Logan ’s results are used in the
present work. The value of -r 0 is approxi mately given by [5]

~ (q2 + + + + ~L1-~) + j 2q 2 e~~
’
~~~; q>>2 , (A-119)

where
z

q — jm 
~~ 

(A 120)

In addi tion to the root r=r 0 corresponding to the Elliot mode , there
are other roots of the equation in (A-h a) which correspond to the set
of Watson modes which are character ized by a signifi cant exponential
decay along their propagation paths. One is pr imari ly interested in the
Elliot mode field in this study as mentioned in Section lI-B , hence the
Watson type modes will not be discussed . Eva 1uatin~ the resid ue at
t= r~ y ields the Elliot mode field corresponding to h~ as:

kY H j(k + ~~~ -r 0) a’P
t

- o e
~~

a,$ �ir 
~ 

-

t
\~

o~~~~~Zj

which may be rewri t ten as

-jytl

= c0 H Lew e 2 t1 . (A - 1 2 2)
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The quantities Lew and y are given by:

Lew = 8-tjk . r 1 1 (A-123 )tm j

LIo~~E7~
and

y = k + !!~. ~ ‘ 
(A —l 24)

in which m and t~~ were prev iously defined in Equation (A-ll4) and
Equation (A —l l 9 ) ,  respective ly. c0 is defined in Equa tion (A—ll6).

The space wave , or the field di rectly radiated by the source may
be found by a stationary phase evaluation of the integral in Equation
(A—l06) for the lit regiQn aj~ter replacing cosv [-ii -1s1 ] in Equation
(A — ) O~ ) by e J~~cosv q~+je3v k~Isinvit , and by including only the term
eJv I~~tsinvir it) this asymptotic , stationary phase evaluation. The
other term e J’~cosv4 gives rise to di ffraction contributions arising
from the multiply encircling circumferentially propagating modes which
are not of interest ~~ this  analys i s as discussed ear l ier  in  the
evaluation of G~ or hz in Equation (A-log) and Equation (A—11O). This
stationary phase eva l uation leads to the geometrical optics approximation
for the field directly radiated by the slot as

—jks ’
h ‘

~
- c H R(~ ) e 

- s’=Q’P
Z lit region ° Q’ is at (a ,O)

P is at (p,~ ). (A—1 25)

where c0 is as in Equation (A-1l6) , and R(~) is the same as in Equation
(A—26) for the planar case with the exception that ~ in Equation (A-l25)
above is the complement of the angle ~ in Equation (A-26) due to a
rotation of the coordinate systems in Figures 4 and 6 (or 7).

TNZ or the circumferential slot case

The magnetic current ~ at Q ’ in th i s case i s

= $ H p ‘

wh ich is a magnetic line dipole at Q’ , an d i t  generates onl y a
z—comp onent of the electric field wh ich is denoted 

~
y ~~~~~. The f i el d ez

may be expressed in term s of a Green ’s func ti on Ge(p ’ j ~ ) which  sa t is f ies
the radiation condition , the partial differential equation in (A-l03) ,
and the boundary condition in Equation (A-106 ) with
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0 S

The in Equation (A-l26 ) is now the reciprocal of that in Equation
(A-.l05). The field ez(a,~

) on the surface_o~ the impedance covered
cylinder may be shown to be related to Ge(PIP ’) by

e
~

(a ,
~
) = - • MVx

-
~ (a ,O) at Q’ on surface

-~ (a,q) at P on surface. 
(A—127 )

or

(2) ’,~ H (ka)
e (a ) = ~~-~~ - d ~ 

COSV~ 1t- ~

z ‘~‘ ~ 2-ta _ 00_j c - jk
.E1

H
~
2)(kP )])

p=a 

sinvn

(A-l28)

As before, employing Equation (A-lO7)~ and neglecting 
the mult i p ly

encircling terms in ez, one obtains ez which excludes the effects of the
multiple encirciements as

e
~ 

= + multiply encircling terms (A-l29)

where

e
~

(a ,$) = - 

~~~ ~i:~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(A-l30)

One may further express as

= + (A-l3l)

in which ~ corresponds to the e i
~~~ term and ~ corresponds to the

~~~~~~ ~~ term in Equation (A—130). Then introducin g the quantities ,

~~ and m ~ in Equations (A—l12;A—l l3;A— 1h4), and the Fock approx i-
mations for H”)(ka) in Equations (A-ll7a;A-ll7 b), respective ly, one
obtains : V
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H 
r 

~~~~~~~~ 
~~ 

dt -1 (A-1 32)

L w
2

( t )
~~~~~~~~~~

’

) 
w~ (-~)

in which

= 
_
~f~ 

. (4 -133)

If the surface impedance Z5 is purely capacitive , then the large curved
impedance surface will support an Elliot type mode mentioned in
Sect ions 1 and Ii. The Elliot mode corresponds to the value of 1 T 0

for which

z
+ j ~ ~~ w 2 (t 0) = 0. (A-l34)

This value , r=-r~ corresponds to the location of the pole of the Elliotmode in the integrand of Equation (A-132). The root T=T
~~ 

is obtained
via Equation (A-119) given by Logan [5] with

z
q = - j m 7

2. . (A .-l35)

Other roots of Equation (A-l34) correspondin g to a set of Watson modes
will not be discussed due to reasons mentioned in Section II. Evaluating
the residue at r=t~ in Equation (A—132) leads to the fol lowing result
for the Elliot mode field.

~ 
— J ( k  + t ) a’pt

kM o e  a o  
36e2 a ,4 - 

~ y-
1 r z 

~~~~~ 

‘ 
-

~
to+I_ni

~
2
~J )

which may be rewritten as
-jyt 1

= c0 H Lew e 2 
t

1 
= . (A-l37)

The quanti ties Lew and y are given by
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~

I

(A-13 8)

and

y = k + 
¶ 

r~ . (A-13g)

The c0 in Equation (A—137) is defined p rev i ousl y in Equation (A—133),
and -r~ is as in Equation (A— llg ) with q as in Equation (A—l35).

The evaluation of the field di rectly radiated by the source in the
lit region is not describe d since i t  reduces to the geometrical opti cs
~ppr oxi m ati on as i n the TE z case. Deno tin g th i s  resul t  f or ez(p ,~) bye
~
(p ,$) , one may wri te

lit region

— jks ’
e,(p ,~) “~ c H R(~ ) 

~~
- ; Q ’P  = s ’

lit region ~ Q’ is at (a,O)
— P is at (p,,). (A—140)

in which c 0 is as in Equation (A—l37), and R(~ ) is  the same as i n
Equation (A-45) for the planar TMz case except that the q in Equation
(A— l40) is the complement of the angle ~ in Equation (A-45) due to a
rotation of the coordinate systems in Fi gures 4 and 6 (or 7).
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APPENDIX IV
THE RADIATION BY AN EQUIVALENT LINE SOURCE AT A DISCONTINUITY

IN SURFACE IMPEDANCE ON A PERFECTLY CONDUCTING CIRCULAR
CYLINDER COVERED WITH A SURFACE IMPEDANC E PATCH

The geometry of this problem is illustrated in Figure 8.
Spec i f i c a l l y ,  the problem j~s~ to ob~~in an approximate but accurate
express ion for the fields u~~’ an~ u1 which are produced v ia dif-
fraction 8f the,~ ncident f i e ld  u 1 from Ql . A similar s~~ of d i f f r a c t e d
f ie lds  

4 
an d u~ are also produced via diffraction of u 1 from Q2~ butfor the sake of definiteness , one may anal yze only the d i f f r ac t ion  from

Ql in this appen d ix ;  the results  for the d i f f r ac t ion  from Q2 woul d be
similar to those for the diffraç~ion from Ql. For an electr ically large
cylinder , the diffracted field u~ on the lit side of SBQ1 i n the deep
lit region is taken to bQ characterized by the same diffraction coef-
ficient as in the field ud which occurs in the p rob lem of surface wave
diffraction by a two part impedance surface of Fi gure 5. The di f f ract i on
coeff icient 0 is defined in Equation (A-74) for the TEz c~~e, an d in
Equation (A-97) for the TMz case , in Appendix II. Thus , u~ may be
written as in Equation (20).

—jks1
~~(P) ‘

~~ ~~(Q 1) D(61 ) 
e 

s1 
= Q 1P an d P is on the l it si de

1 of SBQ 1 i n the dee p lit region.

(A- l4 l)

The f iel d ~~(f)~ may be assumed to be produced by an equivalent magneti c
l ine  current ~~ at Ql on a perf ectl y conduct in g or “unpertur bed”
cylinder; i.e., on the same cy l i n d e r  as in Fi gure 8, but withou t the
surface impedance patch. Oncç, ~~q is found , it may be systematically
employed to obtain the field u~ on the shadow side of SBQ1 . The
TE z or the axial slot case wil l be analyzed fi rst; the TMz or the
circumferential slot case will be analyzed subsequentl y.

TE
~ 

case

TJ~ magnetic field is entirely 2-directed in this case , t hus t he
field u1(P) in Equation (A-141) ma~ be considered to be produced by a
z-directed magnetic line source fl~ at Q’ on the “unperturbed” cylinder
as mentioned above . In this  case , ~~ is given by

6(~~- )6 ( ~~-~ )
= ~ ~~q ° - , at Q . ( A - l 4 2 )

I 1
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The z-directed magnetic fie ld produced by 1~ q of Equation (A-l42) at Q’
on the un pertur bed cyl inder may be easily found to be given by [6]

—jks1
2 ~~ ~e~(~ 1 ) 

e s1 = Q1P, and P is on the lit side

of SBQ 1 in the deep l i t region (A— l43)

where

C
0 

— V 0 ; and ~e~ ( 6 )  = I (A-144 a;A— l44b)

Compari ng the RHS of Equation (A—l 4l) with Equation (A-l43), one obtains

~
i (Q
z c

1 D( 151) Mr ( 5 1
) . (A—145)

in which 
~~

(Ql) and D(61) are 9iven in Equation (15) (also see Equations
(A—123) and (A—124)) and (A-74) , respectively. Con sequent 1~ , M~~ depends
on the aspect angle 6 1, however this is acceptable since ~~~~~~~ is only
an equivalent line source. The value of M~~(o 1) at 51=0 would provide
the streng th of the equ~~a lent  source which launches the surface ray
modes correspondin g to 11

w show n in Fi gure 8. ~he d i ffract i on from the
surface ray modes in turn produces the field as in Figure 8. Th us ,

may be directly obtained via the results in [6) as indicated in
Equation (22).

d N —[a +jk]~ 
— jks1

-
~ c0 M~~(o) 

~~ 
L~ (Q 1) e p 1 D~ (T

1 ) 
e

P in  the deep shadow region on the
shadow side of SBQ1 ; ~l Ql T l ;
see Fi gure 8, (A—l46)

where
1/2

L~ (Q 1 ) = - j ( j k  
~) H~

2
~(ka) ~~ (A-l47)

and L , D~ . and ap respectively correspond to L~ , D~, and a
1
~ in [6].In t h~ transition region adjacent to the shadow boundary SB~1, one mus t

emp loy the Fock approximation in teri :~ ~f g(.) as indicated in Equations
(24) and (25).
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TM~ case

Th~ electric field is entirely i-directed in th is case , thus the
field ul(P) in Equat ion (A-l4l) m~~ be considered to be produced by a
$o directed magnetic line dipo le ~~ at Q’ on the “unperturbed”
cylinder as mentioned above. Thus , in this case , ~~

q is given by:

6 (p—a)ó (4—4 )
= •I 

, at Q1. (A-l48)

The i-directed electric field produced by ~~ in Equation (A-148) at
Q’ on the unperturbed cylinder is known to be [6]

—jks 1
2 C

0 M~
1 ~e~(6) e s1 = Q1

P and P is on the lit side
of SBQ 1 in  the deep l i t reg i on , (4-149)

where
—

~ C
0 

- ; an d R~~(d 1 ) = sin6 1 . (A-lSO);(A-l5l)

One may now fin d Mr by comparing Equation (A—l49) with the RHS of
Equation (A—l4l). Thus ,

~~(Q,) D(6 )~eq = . 
_i_ , (A-152)1 2 C

0 sin 61

in which 
~
‘(Qi ) and D(6i) are 9iven in Equation (15) (a~so see Equa tions(A-l38) and (A-l39)) and (A-97), respectively. Thus , ~~ i n Equat ion

(A-152) is also dependent on 6i just as for t he TE 2 case d iscusse d
earl ier. Fol l owing a similar line of reasoning as indicated for the
TE z case , the value of M~ 1at 51=0 provides the strength of the equivalent
source which produces the fie ld ~~d in the deep shadow region on the
shadow side of SBQ1 as shown in Figure 8. One notes from Equation (A-152)
that

~~(Q1 ) D(6 1 ) 
~~(Q 1 ) [~D(o 1)1= lim 2 c s in 6 = 

2 c . (A-153)
0 l 0 6l~

O 0 1 ° 
L 

1 J 6 . O

It is noted from Equation (A — 97) however th~~ U (s1) is explicitly pro-
portional to sino 1 and hence the value of H1 ’

~(5-j =0) is trivially
ca lcu la ted . Finally , from [6],
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N — [a +~k] & — jks1
~sd(~) ~ c0 M~~(o) 

~~ 

L~ (Q
1 )e p 1 D~ (T 1 ) 

e _

P in the deep shadow region on the
shadow side of SBQ1 ; L1Q 1 T1;
see Figure  8, (A—154)

where

1/2 2)’
L~ (Q

1
) = — (jk .~

.) H (ka) ~~ (A-l 55)

and L0, D , and 
~~ 

respectively correspond to L~, D
5 and 4 in [6]. In

the t~’ans~ ti on regi~ n adjacent to SBQ1 one must emp~oy the Fock approxi-
mation in terms of g() as indicated in Equations (24) and (25).
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METRIC SYS1ThI

BASE IJMTS~
Quanhit ~ (m It SI Symb ol Fo

lengt h fl ictr,~ m
mass kilogram kg
time 5e(ofl d a - -

electric. current ampere A - -

t hermi dynam ic temperature kelvin K
amount of su bstanc e mi,l ” mol
lumi nous intens,t ~ , ande la cd

SUPPLZMENTARY UNITS :

pidne angle radian red
so lid angle sh ’ rad,an sr

DERIVED IIMTS .
Acceleration met re per ass otid squared - -  mis
2 ’ t~ V t ’ ,~ (of a radioactive s~’ur, ci di sintegr ation per SIC Ond - (disin tegratl on )/i
angu lar acceleration radian per set -nod squart.d - -  red/s
angu lar velo c ity radian per sct ond ted/s
a r id sq uare melt.’ m
d i-i -, itv k )gram per i hi, m elt. kg/rn
~ls-r tri, ca pacitance farad I~ A.sN
~Ie. tri( al cond uctan,:e s iemens S AN
i-Li’s tm fie ld strength init per ~iirI r,’ - - Vim
electric inductanc e h.-nr~ II V.a/A
electric potential diff erence volt V WIA
el.~ctr,t. resistance ohm VIA
elect ro motive fotc ~ v o lt V W1A
energy iiul., I N.m
entropy ouli- per k, lvim. - J’l~
force newton N kg.m/s
frequen hert , Hz (cycle )!,
,ll u minance lux lx ImIm
lun,,nance ‘:and e la per sq uaT. metre - cd/rn
lumin ous flu s lumen Im cd.sr
magnet ic fie ld strength ampere per metre - -- A/m
magnet ,c f lux weber Wb V s
magnet ic flux dens it ~ tes la I W~ m
niagne to mot ive tori t’ amper e A
ç oser W at t  W J/i

~ress ur.- (ia~ i P~ N/rn
t ua nt it y of ti le, Ire it , ., u I-i m b C A .

I u a f l t l t %  f heat poo le I N.m
rad ,ant ,ntrnsIt~ c - a tm per st , rad,si , War 

-sje i_ if u h i-at p i l e  per k,l,,grarn - kelvin jlkg.K
Stress pascal Ps N/rn
therma l i- ,,piducti ~ it v %S ~tt he r  metre ki’ I iii - W/rn.K

mi-Pr.’ per se md rn/s
V,scosit ~ - dynani,,. pas, .a l-seci,nd Pa.s

t si:o s i t y. k inemat ,, squ are metre per si- i nd rn/s
v i llage vo lt V W/A

uh, m et ,.’ m
ri-i i pr iical met ri - -- (w avc)/ m

- i rk toii Ic N.m

Si pw~’ixts.

Miiliipii - , t i i Ii I I PiiI ç I~reflx SI Symbol

1 000 ttOt ~ - - l i i i  (liii, t i ,  - ‘ t it ra
1 (lOt ) (if ml) lilt/i 10’ g~g~ 

(;
I 0(1(1 000 I I ’ map M

i ntnt 0 k ilo k
i t t / I  in hectn h

10 10 dek..~ ds
(11 1(1 ’ deci d

I) 01 i t ,  ‘ imnhi ~1 t )ft1 i f)  mliii fl ’
H ( 1( 1 (1 (lil t in - • ,,~lcm $

t u mu lt 1)11(1 (Xli i i )  ‘

1) I I tHI (Ilium 1111 ( 1 (t Il l t o  2

t~ (limi t Il/it t Him 1,1)0 01)1 l t t  -
11 11 (1 (HIt) 1)0(1 i~~m )p (liii ) 11(11 10 - . il l,, C

- - I I. -I  ss hi-ri ’ ~i,,s,,Iili~
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